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Preliminaries

• Datamonkey web-app: 


• http://www.datamonkey.org 


• Test datasets and practical instructions: bit.ly/hyphy-selection-tutorial

http://www.datamonkey.org
http://bit.ly/hyphy-selection-tutorial


Outline

• The different types of selection analyses enabled by dN/dS, told by examples 
from West Nile virus and HIV and analogies from image analysis


• Gene-wide selection (BUSTED)


• Lineage-specific selection (aBSREL)


• Site-level episodic selection (MEME)


• Site-level pervasive selection (FUBAR)


• Relaxed or intensified selection (RELAX)


• Confounding processes (synonymous rate variation, recombination)


• On the suitability of dN/dS for within-species inference



Natural Selection

• Any particular mutation can be 

• Neutral: no or little change in fitness (the majority of genetic variation falls 

into this class according to the neutral theory)


• Deleterious: reduced fitness


• Adaptive: increased fitness


• The same mutation can have different fitness costs in different environments 
(fitness landscape), and different genetic backgrounds (epistasis)
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BACKGROUND 3 http://en.wikipedia.org/wiki/File:Antibiotic_resistance.svg
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BACKGROUND 6

Rapid SIV sequence evolution in macaques in 
response to T-cell driven selection

• SIV: the only animal model of HIV (rhesus macaques)


• Experimental infection with MHC-matched strain of SIV


• Virus sequenced from a sample 2 weeks post infection


• Only variation was in an epitope recognized by the MHC 


• T cell escape

O’Connor et al (2002) Nat Med 8(5):493–499



Evolution of Coding Sequences

• Proper unit of evolution is a triplet of nucleotides — a codon 

• Mutation happens at the DNA level


• Selection happens (by and large) at the protein level


• Synonymous (protein sequence unchanged) and non-synonymous (protein 
sequence changed)  substitutions are fundamentally different

Coding DNA 
sequence

RNA 
Transcription/ 

Assembly

Codon translation 
to amino-acids4→4 61→20
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Conservation

Measles, rinderpest, and peste-de-petite ruminant viruses nucleoprotein.

Nucleotides Aminoacids
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Diversification
An antigenic site in H3N2 IAV hemagglutinin

Nucleotides Aminoacids
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Molecular signatures of selection
• Because synonymous substitutions do not alter the protein, we often 

posit that they are neutral

• The rate of accumulation of synonymous substitutions (dS) gives the 

neutral background

• We can compare the rate of accumulation of non-synonymous 

substitutions (dN), which alter the protein sequence, to classify the nature 
of the evolutionary process

dS ⇠ number of fixed synonymous mutations
proportion of random mutations that are synonymous

dN ⇠ number of fixed non-synonymous mutations
proportion of random mutations that are non-synonymous
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Evolutionary Modes

Positive Selection 
(Diversifying)

dS < dN or  
ω := dN/dS > 1 

Negative Selection dS > dN or ω < 1

Neutral Evolution dS ≃ dN or ω ≃ 1

INTRODUCING DN/DS 5



Estimating dS and dN

Consider two aligned homologous sequences

ACA ATA ATC TTT AAT CAA

T I I F N Q

ACA ATA ACC TTT AAC CAA

T I T F N Q

Can one claim that dN/dS = 1, because there is one 
synonymous and one non-synonymous substitution?

INTRODUCING DN/DS 6



Neutral expectation

• A random mutation is ~3 times more likely to be non-synonymous that 
synonymous, depending on the variety of factors, such as codon composition, 
transition/transversion ratios, etc.


• We need to estimate the proportion of random mutations that are synonymous, 
and use it as a reference to compute dS.


• In early literature, these quantities were codified as synonymous and non-
synonymous “sites” and/or mutational opportunity.


• As a very crude approximation (assuming that third positions ~ synonymous), 
each codon has 1 synonymous and 2 non-synonymous sites.

INTRODUCING DN/DS 8



Computing synonymous and non-synonymous 
sites for GAA (Glutamic Acid)

Aminoacid Codons Redundancy
Alanine GC* 4
Cysteine TGC,TGT 2
Aspartic Acid GAC,GAT 2
Glutamic Acid GAA,GAG 2
Phenylalanine TTC,TTT 2
Glycine GG* 4
Histidine CAC,CAT 2
Isoleucine ATA,ATC,ATT 3
Lysine AAA,AAG 2
Leucine CT*,TTA,TTG 6
Methionine ATG 1
Aspargine AAC,AAT 2
Proline CC* 4
Glutamine CAA,CAG 2
Arginine AGA,AGG,CG* 6
Serine AGC,AGT,TC* 6
Threonine AC* 4
Valine GT* 4
Tryptophan TGG 1
Tyrosine TAC,TAT 2
Stop TAA,TAG,TGA 3

8 non-synonymous site/base combos 
1 synonymous site/base combos

Start codon: G A A
Site/Change to 1 2 3
A AAA


Lysine * *

C CAA

Glutamine

GCA

Alanine

GAC

Aspartic Acid

G * GGA

Glycine

GAG

Glutamic Acid

T TAA

Stop

GTA

Valine

GAT

Aspartic Acid

Synonymous changes 0 0 1

Non-synonymous changes 3 3 2

Synonymous sites 0 0 1/3

Non-synonymous sites 1 1 2/3
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Rate matrix for an MG-style codon model

X,Y = AAA...TTT (excluding stop codons), 
R_{x,y} = neutral rate of substitution from x to y 
πt - frequency of the target nucleotide. 
Example substitutions: 
AAC→AAT  (one step, synonymous - Aspargine) 
CAC→GAC (one step, non-synonymous - Histidine to Aspartic Acid) 
AAC→GTC (multi-step). 

α
β

Rxy

1

Rxy

1

αRCT
βRCG

(Rate)X,Y (dt) =

8
<

:

⇡tdt , one-step, synonymous substitution,
⇡tdt , one-step, non-synonymous substitution,

0 , multi-step.

CODON SUBSTITUTION MODELS 2

α (syn. rate) and β (non-syn. rate)  
are the key quantities for all selection analyses



Goldman-Yang (GY) type substitution model



Multiple substitutions

• The model assumes that point mutations alter one nucleotide at a time, hence 
most of the instantaneous rates (3134/3761 or 84.2% in the case of the 
universal genetic code) are 0. 


• Multiple substitutions must simply be realized via several single nucleotide 
steps, e.g ACT⟹AGT⟹AGG


• In fact the (i,j) element of T(t) = exp(Qt) sums the probabilities of all 
such possible pathways of duration t, including reversions
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Alignment-wide estimates

• Using standard MLE approaches it is straightforward to obtain point 
estimates of dN/dS :=  β/α 

• Can also easily test whether or not dN/dS > 1, or < 1 using the likelihood 
ratio test (LRT)


• Codon models also support the concepts of synonymous and non-
synonymous distances between sequences using standard properties of 
Markov processes (exponentially distributed waiting times)

Theory 13

i to some other codon) is an exponential distribution with rate parameter
defined by the o�-diagonal entries of the rate matrix Q, as ri =

�
j �=i qij .

Recalling that the diagonal elements of the rate matrix Q were defined as
qii = �ri, the expected time to change from i to some other state is �1/qii,
i.e. an average of qii changes from i to some other state given over a unit
length of time. The total expected number of changes per codon per unit
time can be obtained by taking a weighted average over all possible codons

E[subs] = �
⇥

i

⇤iq̂ii,

where q̂ denotes that the rate matrix Q is evaluated using maximum like-
lihood estimates for all model parameters. To make codon based distances
directly comparable with those obtained from nucleotide models, it is cus-
tomary to divide the estimates by 3, reflecting the fact that there are three
nucleotides in a codon.

The total expected number of substitutions can be decomposed into the
sum of synonymous and non-synonymous changes per codon, by summing
rate matrix entries which correspond to synonymous and non-synonymous
substitutions only as follows:

qii = qs
ii + qns

ii =
⇥

j �=i, j and i are synonymous

qij +
⇥

j �=i, j and i are nonsynonymous

qij ,

and

E[subs] = E[syn] + E[nonsyn] = �
⇥

i

⇤iq̂
s
ii �

⇥

i

⇤iq̂
ns
ii .

In order to convert the expected numbers of substitutions per codon to
a more customary dN and dS, one must normalize the raw counts by the
proportions of synonymous and non-synonymous sites (see below), allowing
us to compensate for unequal codon compositions in di�erent alignments.

It is important to realize that ⌅ = ⇥/� is in general not equal to dN/dS as
defined above, although the two quantities are proportional, with the con-
stant dependent upon base frequencies and other model parameters, such as
nucleotide substitution biases. When more than two sequences are involved
in an analysis, the computation of genetic distances between any pair of se-
quences can be carried out by summing the desired quantities (e.g. dS and
dN) over all the branches in the phylogenetic tree which lie on the shortest
path connecting the two sequences in question. An alternative approach
is to estimate the quantities directly from a two-sequence analysis, which
implicitly assumes that the sequences are unrelated (e.g. conform to the
star topology). Depending on the strength of phylogenetic signal and the
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Two example datasets

• West Nile Virus NS3 protein 

• An interesting case study of how 
positive selection detection 
methods lead to testable 
hypotheses for function 
discovery 


• Brault et al 2007, A single 
positively selected West Nile viral 
mutation confers increased 
virogenesis in American crows


• HIV-1 transmission pair 

• Partial env sequences from 
two epidemiologically linked 
individuals


• An example of multiple 
selective environments 
(source, recipient, 
transmission)

PRACTICAL SELECTION ANALYSES 1



Selected 0  and filtered 0  branches! " # $ % Radial

R20_239
R20_245

R20_240
R20_238

R20_242
R20_241
R20_243

R20_244

D20_233

D20_235
D20_236
D20_232

D20_234
D20_237

D20_230
D20_231

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

LinearHIV-1 env

WN NS3 Selected 0  and filtered 0  branches! " # $ % Radial

HNY1999
NY99_EQHS
NY99_FLAMINGO
MEX03
IS_98
PAH001
AST99

RABENSBURG_ISOLATE

WNFCG
SPU116_89

KUNCG
ETHAN4766

CHIN_01
EG101

ITALY_1998_EQUINE
PAAN001
RO97_50
VLG_4
KN3829

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Linear

PRACTICAL SELECTION ANALYSES 2

Recipient

Source

http://phylotree.hyphy.org

http://phylotree.hyphy.org


Information content of the alignments

WNV NS3 HIV-1 env

Sequences 19 16

Codons 619 288

Tree Length 

MG94 model, subs/site 3.32 0.20

PRACTICAL SELECTION ANALYSES 3

How do you expect these measures to correlate with the ability to detect selection?



Model Log L # p dN/dS LRT p-value

Null -7668.7 49 1

Alternative -6413.5 50 0.009 2510.4 ~0

WNV NS3

HIV-1 env
Model Log L # p dN/dS LRT p-value

Null -2078.3 40 1

Alternative -2078.2 41 1.128 0.2 ~0.6

PRACTICAL SELECTION ANALYSES 4

Very strongly conserved

Not significantly different from neutral



Mean gene-wide dN/dS estimates

• Are not the way to go, except when you have very small (2-3 sequence) 
datasets


• For example:


• The humoral arm of the immune system mounts a potent defense against 
viral infections


• Existing successful vaccines are based on raising a neutralizing antibody 
(nAb) response to the pathogen


• No simple host genetic basis (epitopes) of the specificity of neutralizing 
antibody responses is known


• Need to measure these responses

PRACTICAL SELECTION ANALYSES 5



PRACTICAL SELECTION ANALYSES 7

Amino acid substitutions in HIV-1 env accumulate 
faster during rapid escape

PNAS | December 20, 2005 | vol. 102 | no. 51 | 18514-18519 



But upon closer look, this pattern is highly variable 
both across a gene and through time.

PRACTICAL SELECTION ANALYSES 8 PLoS Pathog 12(1): e1005369. Patient 064



PRACTICAL SELECTION ANALYSES 9

Selection inference as image processing

Sites

Br
an

ch
es

Pixel

Evolutionary process along a single 
branch at a single site



Forget about the color

Sites

Br
an

ch
es

Intensity/brightness Color

Evolutionary rate (dN/dS) Type of evolutionary/
function/property change

PRACTICAL SELECTION ANALYSES 10



Evolution is largely unobserved and noisy

Sites

Br
an

ch
es

Visual noise 

Saturation, missing data, model misspecification, 
sampling variation

PRACTICAL SELECTION ANALYSES 11



Evolution is largely unobserved and noisy (another replicate)

Sites

Br
an

ch
es

Visual noise 

Saturation, missing data, model misspecification, 
sampling variation

PRACTICAL SELECTION ANALYSES 12



Evolution is largely unobserved and noisy (another replicate)

Sites

Br
an

ch
es

Visual noise 

Saturation, missing data, model misspecification, 
sampling variation
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 High local variability 

 Stable global (monkey) and local (head, tail) patterns, 
easily discernible 

Desired resolution (branch-site) is not attainable 

Global (and some local) patterns should be inferable 
and testable 

Statistical inference draws power from sample (and 
effect) size, need to aggregate data to gain power

PRACTICAL SELECTION ANALYSES 14



Gene-wide selection (mean dN/dS)

Sites

Br
an

ch
es

Is the average color sufficiently “bright”

Is there evidence that gene-wide dN/dS > 1? Aggregate data over the entire 
alignment, by inferring a single dN/dS parameter from all sites and branches

PRACTICAL SELECTION ANALYSES 15



• Simple 

• single rate parameter 

• relatively compute-light 

• Very robust to local variation 

• Sample size ~ sites x branches 

• Very low power 

• most genes are on average 
conserved 

• No resolution 

• if selection occurred, how much 
of the gene was involved, and 
when did it happen 

• Rate variation model is definitely 
misspecified

PRACTICAL SELECTION ANALYSES 16



Gene-wide selection 
random effects over sites and branches [BUSTED]

Sites

Br
an

ch
es

Is there enough image area that is sufficiently bright; allow each pixel to be one of 3 
colors, chosen adaptively, e.g. to minimize perceptual differences
[BUSTED]: each branch-site combination is a drawn from a 3-bin (dS,dN) distribution. The 
distribution is estimated from the entire alignment. Tests if dN/dS>1 for some branch/site pairs in 
the alignment

GENE-WIDE SELECTION [BUSTED] 1



GENE-WIDE SELECTION [BUSTED] 2

Gene-wide selection analysis using a branch-site 
method (BUSTED), HIV-1 env

Gene-wide dN/dS distribution ω1 = 0.627 (71%) ω2 = 0.649 (27%) ω3 = 106 (2%)

p-value for selection  (H0 : ω3 = 1) <10-15

Log L (no variation) -2078.20

Log L 

(branch-site; 4 addt’l parameters)

-2039.99

Murrell et al | Mol. Biol. Evol | 32(5) | 1365–1371 

ω
0.00001 0.0001 0.001 0.01 0.1 1 10 100

Proportion of sites
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Gene-wide selection analysis using a branch-site 
method (BUSTED), WN NS3

Gene-wide dN/dS distribution ω1 = 0.004 (99.3%) ω2 = (n/a)  ω3 = 1.86 (0.73%)

p-value for selection  (H0 : ω3 = 1) 0.54

Log L (no variation) -6413.50

Log L 

(branch-site; 4 addt’l parameters)

-6396.18

ω
0.00001 0.0001 0.001 0.01 0.1 1 10 100

Proportion of sites

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
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BUSTED analysis

• West Nile Virus NS3 protein 

• No statistical support for 
selection; ML point estimate 
allocates a small proportion of 
sites (~1%) to the selected group 
(dN/dS ~ 2)


• The rest of the gene is very 
strongly conserved (dN/dS = 
0.004)


• HIV-1 transmission pair 

• Very strong evidence of 
strong episodic diversification 
(dN/dS ~ 100) on a small 
proportion of sites (2%)


• The rest of the gene evolves 
with weak purifying selection 
(dN/dS = 0.6-0.7)

GENE-WIDE SELECTION [BUSTED] 4 Murrell et al | Mol. Biol. Evol | 32(5) | 1365–1371 



Where does the power come from for BUSTED? 
An analysis of ~9,000 curated gene alignments from selectome.unil.ch 

Yang 2007; Yang and dos Reis 2011). We have previously
demonstrated that our more recent models improve on
this by allowing branch-to-branch variation across the
entire phylogeny (Kosakovsky Pond et al. 2011; Murrell,
Wertheim, et al. 2012). Our results, along with the those of
Lu and Guindon (2014), underscore that models allowing
selection to vary stochastically over branches should be
adopted henceforth.

This approach shares limitations with most existing codon
models: Using a fixed multiple sequence alignment, treating
all amino acids as equally exchangeable, allowing only single
nucleotide substitutions to occur instantaneously, not
accounting for selection at the RNA or DNA level that
could bias inference, and not explicitly modeling recombina-
tion. In the future, as important substitution process features
are elucidated, we will expand the BUSTED modeling frame-
work to include such features, for example, the ability

to modulate residue exchangeabilities (Delport et al. 2010;
Murrell et al. 2011; De Maio et al. 2013), site-to-site synon-
ymous rate variation as a proxy for selection on DNA/RNA
levels (Pond and Muse 2005), including substitution models
with nonzero rates for multiple nucleotide substitutions
(Kosiol et al. 2007), and the partitioning approach for mitigat-
ing the confounding effect of recombination (Scheffler et al.
2006).

The rates and selective patterns governing evolutionary
processes surely change over time, although the nature of
these changes will itself vary from one evolving system to
another. Our random effects approach to branch-site
models assumes that selective patterns change rapidly, so
that the process governing evolution along a branch is inde-
pendent of the processes on neighboring branches. In con-
trast, covarion models accommodate autocorrelation
between nearby time points. The covarion model proposed
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FIG. 3. Correlates of signal for episodic selection in theselectome data sets. Each panel depicts the fraction of all alignments reported by BUSTED as
positively selected (at P ! 0:05), as a function of (A) the length of the alignment (codons), censored at 2000 due to sparse sampling afterwards, (B) the
number of sequences, (C) the total tree length (expected number of substitutions per codon site), (D) the maximum-likelihood estimate of the !3

parameter, used as a proxy for the “strength” of selection. Plot points were chosen through an adaptive binning scheme, with each point representing at
least 100 data sets. Lowess smoothing polynomials (smoothing span 0.25) are shown in solid light gray.
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BUSTED site-level inference

• Because BUSTED is a random-effects method, it pools information across 
multiple sites and branches to gain power


• The cost to this pooling is lack of site-level resolution, i.e., it is not 
immediately obvious which sites and/or branches drive the signal


• Standard ways to extract individual site contributions to the overall signal is to 
perform a post-hoc analysis, such as empirical Bayes, or “category loading”


• For BUSTED, “category loading” is faster and experimentally better

GENE-WIDE SELECTION [BUSTED] 6 Murrell et al | Mol. Biol. Evol | 32(5) | 1365–1371 
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Which branches are under selection?

Sites

Br
an

ch
es

For each image row, is there a significant proportion of bright pixels, once the column has been reduced to N colors only?

[aBSREL]: at a given branch, each site is a draw from an N-bin (dN/dS) distribution, which is inferred from all data for the branch. 
Test if there is a proportion of sites with dN/dS > 1 (LRT). N is derived adaptively from the data.

Br
an

ch
 1

3-rate fit

BRANCH-LEVEL SELECTION [ABSREL] 1



• Best-in-class power 

• Able to detect episodes of selection, not just selection on 
average at a branch 

• Does not make unrealistic assumptions for tractability, 
improves statistical behavior  

• Sample size is ~sites, branch level rate estimates could be 
imprecise 

• Cannot reliably estimate which individual sites are subject to 
selection 

• Exploratory testing of all branches leads to loss of power for 
large data sets (multiple test correction)

A
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Less Is More: An Adaptive Branch-Site Random Effects Model
for Efficient Detection of Episodic Diversifying Selection
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1Graduate Program in Bioinformatics and Systems Biology, University of California San Diego
2Department of Medicine, University of California San Diego
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Abstract

Over the past two decades, comparative sequence analysis using codon-substitution models has been honed into a
powerful and popular approach for detecting signatures of natural selection from molecular data. A substantial body of
work has focused on developing a class of “branch-site” models which permit selective pressures on sequences, quantified
by the ! ratio, to vary among both codon sites and individual branches in the phylogeny. We develop and present a
method in this class, adaptive branch-site random effects likelihood (aBSREL), whose key innovation is variable para-
metric complexity chosen with an information theoretic criterion. By applying models of different complexity to different
branches in the phylogeny, aBSREL delivers statistical performance matching or exceeding best-in-class existing
approaches, while running an order of magnitude faster. Based on simulated data analysis, we offer guidelines for
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Introduction
Modern biologists take a keen interest in deciphering how
the action of various evolutionary processes generated the
patterns of variation in extant or fossil genetic sequences
(Kosiol and Anisimova 2012). Because of the foundational
importance of natural selection, a mature and diverse library
of computational approaches has been developed to infer its
targets and mechanisms at the molecular level (Delport et al.
2009; Anisimova and Kosiol 2009). Methods that quantify the
strength and type of natural selection by estimating the ratio
of nonsynonymous to synonymous substitution (!) using
phylogenetic codon-substitution models, pioneered by
Muse and Gaut (1994) and Goldman and Yang (1994),
have proven particularly popular and useful. In the context
of infectious diseases (see Aguileta et al. 2009 for a review),
these models have been used successfully to study transmis-
sion (Jonges et al. 2011), zoonosis (Demogines et al. 2012),
the evolution of drug resistance (Stanhope et al. 2008; Hill et
al. 2009; Murrell, De Oliveira, et al. 2012), escape from host
immune response (Frost et al. 2005; Cento et al. 2013),
the development of pathogenicity and virulence (Brault et
al. 2007), emergence of new strains (Schuh et al. 2014),
and evolutionary arms-races between viruses and

host antiviral defenses (Duggal et al. 2011; Daugherty et al.
2014).

A key feature of natural selection is its variability. The
strength and direction of selective effects differ from site to
site and change over time, and an ideal model should produce
reliable results in the presence of such variation. The original
Muse and Gaut (1994) model (MG94) estimated
nonsynonymous and synonymous substitution rates inde-
pendently for each branch b, allowing the average strength
of natural selection (quantified by branch-specific !b ratios)
to vary through time but not across sites. Conversely, Nielsen
and Yang (1998) introduced a model in which ! varied from
site to site, but was constant among branches. Combining the
two ideas, Yang and Nielsen (2002) published the first trac-
table “branch-site” model which incorporated limited varia-
tion in! both among sites and among branches and could be
used for detecting episodic positive selection. Considering
that this model and its refinements (Zhang et al. 2005;
Anisimova and Yang 2007) have been cited over 2,000
times in peer-reviewed literature, it is clear that many re-
searchers are using branch-site models to study the history
of natural selection in their systems. However, these models
have two key limitations. First, they explicitly disallow positive
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• Uses a computationally simple trick to compute the 
likelihood of data, efficiently summing over all 
possible assignments of rate classes to branches  

• These cannot be factored into products, unlike sites, 
because evolution across tree branches is correlated, i.e. a 
change in the process along one branch affects many 
others. 

• Uses a greedy (but well-performing) step-up 
procedure to decide how many rate classes to 
allocate to each branch, prior to testing for selection 

• Perform an evolutionary complexity analysis first (the 
adaptive part), then run selection tests.
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aBSREL analysis

• West Nile Virus NS3 protein 

• 91% branches can be explained 
with simple (single dN/dS) models


• 3 branches (9%, 60% of tree 
length) have evidence of multiple 
dN/dS rate classes over sites, but 
none with significant proportions 
of sites with dN/dS > 1 

• HIV-1 transmission pair 

• 81% branches can be explained 
with simple (single dN/dS) models


• 5 branches (19%, 90+% of tree 
length) have evidence of multiple 
dN/dS rate classes over sites


• 3 branches have small (1-7%), but 
statistically significant (p<0.05, 
multiple testing corrected) 
proportions of sites with dN/dS > 
1, including the transmission 
branch

BRANCH-LEVEL SELECTION [ABSREL] 6



Correlates of evolutionary complexity
An analysis of ~9,000 curated gene alignments from selectome.unil.ch 

⬆(branch length) 
increased process complexity

⬆(longer genes) 
larger sample size

⬇ (#taxa) 
for a fixed taxon range

⬆(test signal) 
model resolution/effect

that a substantial majority of individual branches (84.5%) can
be adequately modeled with a single! rate class (Kb ¼ 1, see
table 3). On average, across 493,172 analyzed branches, Kb was
1.16 (compared with Kb ¼ 3 for BSREL), implying greatly re-
duced model complexity and improved run times. Branches
with three rate classes were exceedingly rare (about 1 in 3,600
tested), and there was not a single branch with Kb 4 3,
implying that inference based on a single branch is necessarily
limited in site-level resolution (Murrell, Wertheim, et al. 2012).

Branches inferred to have multiple! rate classes tended to
come from longer alignments (fig. 4A, P< 0.001 analysis of
variance [ANOVA]), as expected because sites are modeled as
independent and identically distributed samples from an un-
derlying distribution, and increasing sequence length

increases sample size and power (e.g., Scheffler et al. 2014),
although pushing model complexity past Kb ¼ 3 may require
sequence lengths far exceeding a typical gene length. There
was also a pronounced trend to choose Kb 4 1 more fre-
quently for longer branches (fig. 4B, p< 0.001 ANOVA),
which confirmed both our prior intuition and well-known
simulation-based results which require some minimum diver-
gence level (branch lengths) for codon-based methods to gain
power (e.g., Anisimova et al. 2001; Murrell, Wertheim, et al.
2012; Scheffler et al. 2014). We also noticed a drop in the
proportion of branches with more than one! as the number
of sequences was increased (fig. 4C, P< 0.001 ANOVA). One
possible explanation of this behavior is that increasing the
density of taxonomic sampling, that is, shortening the average
branch length by adding more sequences, dilutes the power
to detect Kb 4 1. The confounding effect of this behavior
depends on the data set at hand: For instance in many viral
applications deep internal branches segregating viral species
or subtypes are going to be unaffected by additional sampling
of recent isolates (Wertheim and Kosakovsky Pond 2011),
whereas the effect of adding new taxa to a fixed clade
(Selectome) is more complex, and should be considered
before undertaking exploratory selection analyses. Finally,
figure 4D confirms the trend that nearly all significant results
for episodic positive selection arise on branches with Kb 4 1.

Examining the results from the standpoint of individual
alignments, aBSREL evinced episodic selection along at least
one branch in 2,079 alignments or 23.4% of the total. This
number increases to 7,109 (80.0%) if no multiple testing cor-
rection is carried out. Previous analyses with Nielsen–Yang
branch-site analyses using uncorrected P values found at least
one branch under selection in 3,747 of these alignments at
P " 0:05, suggesting that episodic positive selection is far
more prevalent than previously reported and that aBSREL
has far higher sensitivity. According to aBSREL there was ev-
idence of episodic selection along a mean of 0.3 branches (2.3
branches without multiple testing correction) per alignment.
Comparing the results of aBSREL with those reported by the
Selectome pipeline (both using uncorrected P values), we
found that the methods agreed on 17.7% of the alignments
with no evidence of episodic selection, and 39.8% with evi-
dence of selection along at least one branch. aBSREL reported
a positive finding of positive diversifying selection (vs. a neg-
ative finding by selectome) for 39.8% of the alignments,
whereas the reverse was true only for 2.3% of the alignments.
Restricting aBSREL inferences by requiring that P values pass
multiple testing correction, something not done by the

Table 3. Branch-Level Statistics for the aBSREL Analysis of the 8,893 Selectome Coding Alignments (493,172 total branches), Stratified by the
Inferred Number of x Classes (Kb).

Kb % of Total Median (interquartile range) % with P " 0:05

Branch Length Sequence Length, Codons Branch Count Corrected Uncorrected

1 84.51 0.02 (0.005–0.05) 145 (89–226) 67 (55–77) 0.0043 0.054

2 15.46 0.16 (0.08–0.42) 190 (124–293) 63 (51–73) 3.5 26.6

3 0.028 0.46 (0.07–5.3) 232.5 (139–412.5) 67 (55–77) 9.6 78.6
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FIG. 4. Correlates of signal for evolutionary process complexity in the
selectome data sets. Each panel depicts the fraction of all align-
ments reported by aBSREL as having more than one! rate class selected
by the step-up procedure (Kb), as a function of (A) the length of the
alignment (codons), censored at 2,000 due to sparse sampling after-
wards (binned in increments of 50 codons); (B) branch length (expected
substitutions per site [binned in increments of 0.01]); (C) the number of
sequences (binned in increments of 2 sequences); (D) uncorrected P
value for episodic positive selection (binned in increments of 0.005).
Each point represents an average over at least 100 individual branches.
Lowess smoothing polynomials (smoothing span 0.25) are shown in
solid light gray.

1349

Adaptive Branch-Site REL . doi:10.1093/molbev/msv022 MBE

 at U
niversity of C

alifornia, San D
iego on A

ugust 12, 2015
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

BRANCH-LEVEL SELECTION [ABSREL] 7



Unanticipated effects of bad modeling 
assumptions

• Models that fail to account for significant shifts in selective pressures through 
lineages also significantly underestimate branch lengths


• An instructive example is long-range molecular dating of pathogens, where 
recent isolates (e.g., 30-50 years of sampling) are used to extrapolate the 
date when a particular pathogen had emerged


• This creates the situation when terminal branches in the tree have relatively 
high dN/dS (within-host level evolution), which deep interior branches have 
very low dN/dS (long term conservation)

BRANCH-LEVEL SELECTION [ABSREL] 8



• Using models that do not vary 
selection pressure across lineages 
yields a patently false “too young” 
estimate for the origin of measles 
(about 600 years ago)


• This estimate is refuted by clear 
historical records which suggest 
that measles is at least 1,500-5,000 
years old


• This includes a treatise by a Persian 
physician Rhazes about differential 
diagnosis of measles and smallpox 
published circa 600 AD. 

• Same patterns found for corona-
viruses, ebola, avian influenza and 
herpesvirus

BRANCH-LEVEL SELECTION [ABSREL] 9 Wertheim and Pond (2011) Mol Biol Evol. 28(12):3355-65



Which sites are under selection?

Sites

Br
an

ch
es

For each image column, is there a significant proportion of bright pixels, once the column has 
been reduced to 2 colors only?
[MEME]: at a given site, each branch is a draw from a 2-bin (dS, dN) distribution, which is inferred 
from that site only. Test if there is a proportion of branches with dN>dS (LRT)

Murrell et al 2012

Site 1

2-rate 
fit

SITE-LEVEL SELECTION [MEME] 1



• Best-in-class power 

• Able to detect episodes of selection, not just selection on 
average at a site 

• Embarrassingly parallel (farm out each site), so runs 
reasonably fast 

• Sample size is ~sequences, site level rate estimates 
imprecise 

• Cannot estimate which individual branches are subject 
to selection 

• Does not scale especially well with the number of 
sequences
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Abstract

The imprint of natural selection on protein coding genes is often difficult to identify because selection is frequently
transient or episodic, i.e. it affects only a subset of lineages. Existing computational techniques, which are designed to
identify sites subject to pervasive selection, may fail to recognize sites where selection is episodic: a large proportion of
positively selected sites. We present a mixed effects model of evolution (MEME) that is capable of identifying instances of
both episodic and pervasive positive selection at the level of an individual site. Using empirical and simulated data, we
demonstrate the superior performance of MEME over older models under a broad range of scenarios. We find that episodic
selection is widespread and conclude that the number of sites experiencing positive selection may have been vastly
underestimated.
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Introduction

Following the introduction of computationally tractable codon-
substitution models [1,2] nearly two decades ago, there has been
sustained interest in using these models to study the past action of
natural selection on protein coding genes. Positive selection can be
inferred whenever the estimated ratio (v) of non-synonymous (b)
to synonymous (a) substitution rates significantly exceeds one
(reviewed in [3] and [4]). In the original models, the v ratio was
shared by all sites in an alignment, providing little power to detect
the signature of positive selection. Indeed, even among classical
examples of positively selected genes [5,6,7], most substitutions are
expected to be neutral or deleterious [8]. Consequently, relatively
few genes in which mean v estimates are significantly greater than
one are expected to exist, e.g. only 35=8079 were found in a
human - chimpanzee genome-wide comparison [9].

Random effects codon-substitution models [10] permitted v to
vary from site to site, which made it possible to identify instances
when positive selection had acted only upon a small proportion of
sites. Such site-level models can detect which positions in a
sequence alignment may have been influenced by diversifying
positive selection, e.g. [11,12]. However, these models posit that
diversifying selective pressure at each site remains constant
throughout time, i.e. affects most lineages in the phylogenetic
tree, (Figure 1A), and there are very few cases where this
assumption is biologically justified (see [13,14,15,16] for examples
of models that allow selection to vary throughout the tree). When a

site evolves under purifying selection on most lineages, site
methods which assume v is constant over time may be unable
to identify any episodic positive selection, since they will likely infer
vv1 [17]. It has been noted that positive selection is more readily
identified in smaller alignments: counterintuitively, including
additional sequences may cause sites to no longer be detected
[18,19]. This phenomenon could be readily explained by purifying
selection on some lineages masking the signal of positive selection
on others.

We present a mixed effects model of evolution (MEME), based
on the broad class of branch-site random effects phylogenetic
methods recently developed by our group [20]. MEME allows the
distribution of v to vary from site to site (the fixed effect) and also
from branch to branch at a site (the random effect, Figure 1B).
Our approach provides a qualitative methodological advance over
existing approaches which integrate site-to-site and lineage-to-
lineage rate variation, e.g. the branch-site methods [17] or codon-
based covarion models [13]. MEME can reliably capture the
molecular footprints of both episodic and pervasive positive
selection, a task for which current models are not well suited.
Using empirical sequence data sets spanning diverse taxonomic
categories and gene functions, along with comprehensive simula-
tions, we demonstrate that MEME matches the performance of
traditional site methods when natural selection is pervasive, and
that MEME reliably identifies episodes of diversifying evolution
affecting a small subset of branches at individual sites, where site
methods often report purifying selection at the same site. For most
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Introduction

Following the introduction of computationally tractable codon-
substitution models [1,2] nearly two decades ago, there has been
sustained interest in using these models to study the past action of
natural selection on protein coding genes. Positive selection can be
inferred whenever the estimated ratio (v) of non-synonymous (b)
to synonymous (a) substitution rates significantly exceeds one
(reviewed in [3] and [4]). In the original models, the v ratio was
shared by all sites in an alignment, providing little power to detect
the signature of positive selection. Indeed, even among classical
examples of positively selected genes [5,6,7], most substitutions are
expected to be neutral or deleterious [8]. Consequently, relatively
few genes in which mean v estimates are significantly greater than
one are expected to exist, e.g. only 35=8079 were found in a
human - chimpanzee genome-wide comparison [9].

Random effects codon-substitution models [10] permitted v to
vary from site to site, which made it possible to identify instances
when positive selection had acted only upon a small proportion of
sites. Such site-level models can detect which positions in a
sequence alignment may have been influenced by diversifying
positive selection, e.g. [11,12]. However, these models posit that
diversifying selective pressure at each site remains constant
throughout time, i.e. affects most lineages in the phylogenetic
tree, (Figure 1A), and there are very few cases where this
assumption is biologically justified (see [13,14,15,16] for examples
of models that allow selection to vary throughout the tree). When a

site evolves under purifying selection on most lineages, site
methods which assume v is constant over time may be unable
to identify any episodic positive selection, since they will likely infer
vv1 [17]. It has been noted that positive selection is more readily
identified in smaller alignments: counterintuitively, including
additional sequences may cause sites to no longer be detected
[18,19]. This phenomenon could be readily explained by purifying
selection on some lineages masking the signal of positive selection
on others.

We present a mixed effects model of evolution (MEME), based
on the broad class of branch-site random effects phylogenetic
methods recently developed by our group [20]. MEME allows the
distribution of v to vary from site to site (the fixed effect) and also
from branch to branch at a site (the random effect, Figure 1B).
Our approach provides a qualitative methodological advance over
existing approaches which integrate site-to-site and lineage-to-
lineage rate variation, e.g. the branch-site methods [17] or codon-
based covarion models [13]. MEME can reliably capture the
molecular footprints of both episodic and pervasive positive
selection, a task for which current models are not well suited.
Using empirical sequence data sets spanning diverse taxonomic
categories and gene functions, along with comprehensive simula-
tions, we demonstrate that MEME matches the performance of
traditional site methods when natural selection is pervasive, and
that MEME reliably identifies episodes of diversifying evolution
affecting a small subset of branches at individual sites, where site
methods often report purifying selection at the same site. For most
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1 (e.g. West Nile virus NS3) and 48 (Diatom SIT) additional sites
that were subject to episodic diversifying selection (Table 2). In
four data sets, 1{7sites identified by FEL with p-values close to
0:05 were missed by MEME. Note that MEME p-values for these
sites remained in the 0:05{0:07range (Table 2), i.e. marginally
significant.

Sites identified by both methods tended to have a greater
average proportion of lineages under selection (0:59, measured by
the mean of MLE estimates of qz); sites found only by MEME
experienced more episodic selection (0:10). In 9 data sets (Table 2),
sites that FEL inferred to be under purifying selection are instead
identified by MEME as likely to have been subjected to episodic
diversifying selection. Almost universally (Tables S4, S5, S6, S7,
S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19), such
sites had a smaller estimated proportion of positively selected
lineages (v10%). This behavior is consistent with the relative
performance of the two tests on simulated data and corroborates
the expectation that MEME has greater power to identify sites
when only a proportion of lineages evolved under positive
selection. Vertebrate rhodopsin, Japanese encephalitis virus env,
and Camelid VHH are investigated in detail below; for a
discussion other genes, see Text S1.

Vertebrate rhodopsin
The vertebrate rhodopsin (a low-light vision protein) data set

was previously experimentally investigated for the substitutions
that modulate the wavelength of the light absorbed by the
molecule (lmax, [18]). The authors asserted that, because none of
the 12 sites that they had determined as affecting lmax by site-
directed mutagenesis were detected by site-level computational
methods, ‘‘statistical tests of positive selection can be misleading
without experimental support.’’ Other authors reanalyzed the
same data set more comprehensively and went even further, ques-
tioning the utility of v-based methods for detecting experimentally

validated sites, because ‘‘most of the current statistical methods are
designed to identify codon sites with high v values, which may not
have anything to do with functional changes. The codon sites
showing functional changes generally do not show a high v value’’
[29]. The validity of this generalization has been correctly
questioned with a simple counter-argument that the sites detected
by computational methods may also be functionally important,
because the change in lmax is unlikely to be the sole determinant of
adaptation [17].

The MEME analysis of this gene suggests another obvious
alternative, also expounded by previous studies [17]: the failure of
the original computational analysis [18] to identify functionally
important sites results from the fact that these sites have been
subjected to episodic selection, which is masked by predominantly
purifying selection elsewhere in the tree. Indeed, among three sites
that alter lmax found by MEME (96, 183 and 195, versus none
found by FEL), no more than 13% of the branches exhibited vw1
(Table S17); at these sites, the average v is less than 1. We note
that, because adaptive evolution will not always adhere to a single,
simple scenario of episodic diversifying selection, we do not expect
MEME to find all 12 sites experimentally confirmed to alter
lmax. For example, three of the nine missed sites (83,194,292)
appear to have been subjected to partial selective sweeps and have
been detected using a specialized model of directional evolution
[29].

Three sites from this alignment can be used to illustrate how the
inclusion of lineage variability modifies inference of selection
(Figure 2). Site 54 was inferred to have experienced pervasive non-
synonymous substitutions throughout its evolutionary history. Both
FEL and MEME detect this site as positively selected (p~0:02).

Sixty three percent of the lineages at this site evolved with bzwa,
whereas the remainder were conserved (a~b{~0), according to
MEME. The log-likelihood of the site is only marginally higher for
MEME, which suggests that MEME behaves like FEL at sites with

Figure 2. Individual sites of the vertebrate rhodopsin alignment used to illustrate similarities and differences between FEL and
MEME. Branches that have experienced substitutions, based on most likely joint maximum likelihood ancestral reconstructions at a given site, are
labeled as count of synonymous substitutions:count of non-synonymous substitutions. The thickness of each branch is proportional to the minimal
number of single nucleotide substitutions mapped to the branch. Branches are colored according to the magnitude of the empirical Bayes factor
(EBF) for the event of positive selection: red – evidence for positive selection, teal – evidence for neutral evolution or negative selection, black –Ê no
information. See Methods for more detail. All three sites were identified as experiencing positive diversifying selection by MEME. FEL reported site 54
as positively selected, site 273 as neutral, and site 210 as negatively selected.
doi:10.1371/journal.pgen.1002764.g002
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SITE-LEVEL SELECTION [MEME] 4

HIV-1 env
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SITE-LEVEL SELECTION [MEME] 5
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MEME results

• West Nile Virus NS3 protein 

• Three sites, (including 249) with 
significant evidence of episodic 
(or pervasive) d ivers i fy ing 
selection.


• HIV-1 transmission pair 

• Eleven sites with significant 
ev idence o f episod ic ( o r 
pervasive) diversifying selection.

SITE-LEVEL SELECTION [MEME] 6



Why MEME?

• Affords a much greater power to detect selection 

• Mitigates the pathological effect when adding 
sequences to a sample can reduce, or remove, signal 
of selection

“The greater power of MEME indicates that selection acting at individual sites 
is considerably more widespread than constant ω models would suggest. It also 
suggests that natural selection is predominantly episodic, with transient 
periods of adaptive evolution masked by the prevalence of purifying or neutral 
selection on other branches. We emphasize that MEME is not just a quantitative 
improvement over existing models: for 56 sites in our empirical analyses, we 
obtain qualitatively different conclusions. FEL asserts that these sites evolved 
under significant purifying selection, but MEME is able to identify the 
signature of positive selection on some branches” 

SITE-LEVEL SELECTION [MEME] 7 Murrell et al | PLoS Genet 8(7): e1002764



Why MEME?

• Affords a much greater power to detect selection 

• Mitigates the pathological effect when adding 
sequences to a sample can reduce, or remove, signal 
of selection

“Although a previous analysis of 38 vertebrate rhodopsin sequences found no 
sites under selection at posterior probability >95%, the same authors found 7 
selected sites in the subset of 11 squirrelfish sequences, and 2 selected sites 
when the subset of 28 fish sequences was analyzed. These results run counter to 
the expectation that more data should provide greater power to detect selection. 
MEME, on the other hand, [typically] detects more selected sites when more 
sequences are included.”

SITE-LEVEL SELECTION [MEME] 8 Murrell et al | PLoS Genet 8(7): e1002764



Analysis summary

WNV NS3 HIV-1 env

Gene-wide episodic 
selection (BUSTED) No Yes

Branch-level selection 
(aBSREL) No Yes, three branches, 

including transmission

Site-level episodic 
selection (MEME) Yes, 3 sites Yes, 11 sites

INTERPRETING RESULTS 1



It is not unexpected that site-level positive results can 
occur when a gene-level test does not yield a positive result

• Lack of power for the global test: if the proportion of sites under selection 
is very small, a mixture-model test, like BUSTED, will miss it.


• Model violations: MEME supplies much more flexible distributions of dN/dS 
over sites; compared to alignment-wide 3-bit BUSTED distribution.


• False positives at site-level: our site-level tests have good statistical 
properties, but each positive site result could be a false positive; FWER 
correction would make site-level tests too conservative.


• Summary: gene-level selection tests need a minimal proportion of sites to be 
under selection to be powered; site-level tests should not be used to make 
inferences about gene-level selection.

INTERPRETING RESULTS 2



INTERPRETING RESULTS 3

However, we caution that despite obvious interest in 
identifying specific branch-site combinations subject 
to diversifying selection, such inference is based on 
very limited data (the evolution of one codon along 
one branch), and cannot be recommended for 
purposes other than data exploration and result 
visualization. This observation could be codified as 
the “selection inference uncertainty principle” — 
one cannot simultaneously infer both the site and the 
branch subject to diversifying selection. In this 
manuscript [MEME], we describe how to infer the 
location of sites, pooling information over branches; 
p rev ious ly [aBSREL] we have ou t l i ned a 
complementary approach to find selected branches 
by pooling information over sites.  
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FUBAR: selection testing done fast

Sites

Br
an

ch
es

Average colors over sites; use a relatively large but fixed palette to approximate the image

[FUBAR]: Fix a grid of dS and dN values, use the data to sample (Bayesian MCMC) weights to individual grid points; 
this forms the prior distribution on rates; use empirical Bayes to obtain site-level estimates of posterior probability that 
dN > dS 

Murrell et al 2013

5 (best) color adaptive palette
Fixed web palette (216 colors)

Wait? How can 
Bayesian MCMC over 

codon models possibly be 
faster than direct 

estimation?
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• The time consuming part of traditional random-
effects models is the estimation of the aliment-wide 
dN/dS distribution 

• Each hyper-parameter adjustment entails an 
expensive phylogenetic likelihood calculation 

• Larger data sets —> more complex mixtures 
needed to avoid smoothing, i.e., more parameters, 
more evaluations, and a non-linear dependance on 
data-set sizes

FUBAR 2



• With FUBAR we make the following approximations: 

• Branch lengths, GTR biases etc, are estimated using simple 
(nucleotide models) and held fixed 

• We fix a 15x15 or 20x20 grid of (dS,dN) values a priori; the data 
only inform how much weight will be allocated to each point 

• Only need to evaluate the expensive codon-based phylogenetic 
likelihood once for each grid point: complexity only increases 
linearly with the size of the data. This step is also embarrassingly 
parallel.

• Allocating weights to individual points is done using MCMC (or 
Gibbs sampling, or variational Bayes); this step does not require 
ANY further evaluations of the phylogenetic likelihood, i.e., its cost 
does not depend on the size of the alignment

FUBAR 3 Murrell et al | Mol Biol Evol 30 (5): 1196–1205



(Yang 2000) but to make parameter estimation tractable and
to obtain reliable point estimates of parameter values, all of
them are restricted to a small number of parameters. In ad-
dition, the distribution is either discrete or is discretized to
allow numerical computation of the likelihood. The number
of discrete components must be small, because the compu-
tational complexity of the likelihood calculation increases lin-
early with the number of discrete components. It is worth
emphasizing that the synonymous and nonsynonymous sub-
stitution rates are inherently continuous-valued quantities
and that their discretization is an approximation for compu-
tational convenience; as we show in later sections, overly
coarse discretizations can mislead inference.

Huelsenbeck et al. (2006) proposed a nonparametric
Bayesian approach, which addresses both the choice of dis-
tribution over selection parameters and the discretization,
but at a prohibitive computational cost. Data augmentation
techniques have improved the speed of inference under com-
plex models (Lartillot 2006; Rodrigue et al. 2008; de Koning
et al. 2012), but they remain intractable for large alignments.

In this article, we introduce FUBAR (a Fast Unconstrained
Bayesian AppRoximation), which exploits several computa-
tional shortcuts to speed up the detection of positive or pu-
rifying selection, and to relax the above REL restrictions,
leading to improved robustness against model misspecifica-
tion and permitting the analysis of large data sets for which
selection analysis was previously intractable. The key idea is to
precompute a number of conditional likelihoods, arranged on
an a priori-selected grid of values for ! and " (in contrast to
existing REL methods that shift the locations of the !, "½ "
categories during optimization, depending on the data).
Inference of selection parameters then proceeds without re-
quiring further phylogenetic likelihood computation, instead
repeatedly reusing the precomputed values. Our default rec-
ommendation for the number of grid points is 400: This is
large and therefore finely discretized compared with the

number of ð!, "Þ categories in typical random effects
approaches, for example, that of Kosakovsky Pond and
Muse (2005), which uses nine categories. However, as evi-
denced by the speedups we obtain, it is vastly smaller than
the number of likelihood calculations performed during
either optimization-based or sampling-based inference in ex-
isting methods, regardless of whether they use fixed or
random effects models.

Although we have also used this approach to obtain large
speedups in fixed effects models and in random effects
models employing rate distributions with a small number
of parameters, one of its key features is that it allows the
implementation of far more parametrically complex models
without extra computational cost. For this reason, we see the
greatest utility in Bayesian approaches that allow large num-
bers of parameters to be used without being subject to over-
parameterization. Here, we present such an approach:
following conventional random effects models, the selection
parameters at each site are drawn from a gene-specific dis-
tribution for ð!, "Þ, but instead of using a low-dimensional
parametric form for this distribution we adopt the general
bivariate discrete distribution, parameterized by a weight at
each point of the grid (fig. 1), and imposing no further con-
straints on the individual weights. Using a hierarchical
Bayesian framework, we assume a Dirichlet prior for the
gene-specific distribution of rate class weights, and use a
Markov Chain Monte Carlo (MCMC) approach to integrate
over the uncertainty in the posterior gene-specific and
site-specific distributions. We show that this approach is
less vulnerable to model misspecification than existing
approaches, while also running orders of magnitude faster.

New Approaches
Following Muse and Gaut (1994), we model the evolution of a
particular site along a particular branch of the phylogenetic
tree as a continuous-time Markov process, governed by the

FIG. 1. The synonymous and nonsynonymous rates (!,") are continuous model parameters that vary from one site to another, illustrated by a
hypothetical distribution in (A). Typical random effects models, as exemplified by Dual REL (Kosakovsky Pond and Muse 2005) in (B) use a small
number of discrete categories to approximate this continuous distribution, allowing the location (represented by the green bars) and the probability
mass of the discrete points to vary; a change in the location of a point necessitates a re-evaluation of the phylogenetic likelihood function. FUBAR,
in (C), uses a much denser grid of values chosen a priori, relying on the grid density to circumvent the need to move the parameter locations, and
on MCMC to sample the weights assigned to each point. Without the need for movable grid lines, FUBAR needs to compute the conditional likelihood
associated with each point only once, eliminating the bottleneck hindering traditional random effects models. Note that the uniform grid spacing
depicted here is stylized. As the uncertainty in the selection parameters grows with their magnitude, FUBAR uses larger spacing for larger values
(see text for details).
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Abstract

Model-based analyses of natural selection often categorize sites into a relatively small number of site classes. Forcing each
site to belong to one of these classes places unrealistic constraints on the distribution of selection parameters, which can
result in misleading inference due to model misspecification. We present an approximate hierarchical Bayesian method
using a Markov chain Monte Carlo (MCMC) routine that ensures robustness against model misspecification by averaging
over a large number of predefined site classes. This leaves the distribution of selection parameters essentially uncon-
strained, and also allows sites experiencing positive and purifying selection to be identified orders of magnitude faster
than by existing methods. We demonstrate that popular random effects likelihood methods can produce misleading
results when sites assigned to the same site class experience different levels of positive or purifying selection—an
unavoidable scenario when using a small number of site classes. Our Fast Unconstrained Bayesian AppRoximation
(FUBAR) is unaffected by this problem, while achieving higher power than existing unconstrained (fixed effects likeli-
hood) methods. The speed advantage of FUBAR allows us to analyze larger data sets than other methods: We illustrate
this on a large influenza hemagglutinin data set (3,142 sequences). FUBAR is available as a batch file within the latest
HyPhy distribution (http://www.hyphy.org), as well as on the Datamonkey web server (http://www.datamonkey.org/).

Key words: evolutionary model, coding sequence evolution, approximate Bayesian inference, parallel algorithms.

Introduction
Codon-based models of evolution have proved extremely
useful for identifying sites evolving under selection in pro-
tein-coding genes (Anisimova and Kosiol 2009; Delport et al.
2009). These models use a probabilistic approach to infer
whether the nonsynonymous substitution rate (!) at a spe-
cific site is faster or slower than the neutral rate, which is
typically set to the synonymous rate (") at the same site
(or to the mean synonymous rate for the entire alignment).
However, existing software tools are simply too slow to allow
analysis of many large data sets that are currently available.

The codon-modeling literature has largely focused on two
ways of inferring the selection parameters ð", !), either jointly
or as the ratio ! ¼ !=". First, in fixed effects likelihood (FEL)
models (Kosakovsky Pond and Frost 2005; Massingham and
Goldman 2005) the parameters are inferred independently
for each site. This approach avoids assumptions about the
distribution of selection parameters over sites, yielding greater
flexibility to describe such distributions. However, the absence

of parametric assumptions means that evidence from one
site cannot inform our expectations regarding another: The
inference at an individual site is based only on the limited
amount of data from that site. The effect of this is that point
estimates of site-specific parameter values can be unreliable,
although robust inference is still possible by taking the uncer-
tainty about these point estimates into account (Kosakovsky
Pond and Frost 2005). Furthermore, methods where the
number of parameters increases with the number of obser-
vations can be asymptotically inconsistent (Felsenstein 2001).

By contrast, random effects likelihood (REL) models
(Nielsen and Yang 1998; Kosakovsky Pond and Muse 2005)
are designed to share information across sites by inferring a
gene-specific distribution for the selection parameters, with
the assumption that the rates at each site are an independent
draw from this distribution. Site-specific distributions for the
selection parameters can then be obtained by application of
Bayes’ rule. Many parametric forms have been investigated
for the gene-specific distribution of selection parameters

! The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please
e-mail: journals.permissions@oup.com
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Abstract

Model-based analyses of natural selection often categorize sites into a relatively small number of site classes. Forcing each
site to belong to one of these classes places unrealistic constraints on the distribution of selection parameters, which can
result in misleading inference due to model misspecification. We present an approximate hierarchical Bayesian method
using a Markov chain Monte Carlo (MCMC) routine that ensures robustness against model misspecification by averaging
over a large number of predefined site classes. This leaves the distribution of selection parameters essentially uncon-
strained, and also allows sites experiencing positive and purifying selection to be identified orders of magnitude faster
than by existing methods. We demonstrate that popular random effects likelihood methods can produce misleading
results when sites assigned to the same site class experience different levels of positive or purifying selection—an
unavoidable scenario when using a small number of site classes. Our Fast Unconstrained Bayesian AppRoximation
(FUBAR) is unaffected by this problem, while achieving higher power than existing unconstrained (fixed effects likeli-
hood) methods. The speed advantage of FUBAR allows us to analyze larger data sets than other methods: We illustrate
this on a large influenza hemagglutinin data set (3,142 sequences). FUBAR is available as a batch file within the latest
HyPhy distribution (http://www.hyphy.org), as well as on the Datamonkey web server (http://www.datamonkey.org/).

Key words: evolutionary model, coding sequence evolution, approximate Bayesian inference, parallel algorithms.

Introduction
Codon-based models of evolution have proved extremely
useful for identifying sites evolving under selection in pro-
tein-coding genes (Anisimova and Kosiol 2009; Delport et al.
2009). These models use a probabilistic approach to infer
whether the nonsynonymous substitution rate (!) at a spe-
cific site is faster or slower than the neutral rate, which is
typically set to the synonymous rate (") at the same site
(or to the mean synonymous rate for the entire alignment).
However, existing software tools are simply too slow to allow
analysis of many large data sets that are currently available.

The codon-modeling literature has largely focused on two
ways of inferring the selection parameters ð", !), either jointly
or as the ratio ! ¼ !=". First, in fixed effects likelihood (FEL)
models (Kosakovsky Pond and Frost 2005; Massingham and
Goldman 2005) the parameters are inferred independently
for each site. This approach avoids assumptions about the
distribution of selection parameters over sites, yielding greater
flexibility to describe such distributions. However, the absence

of parametric assumptions means that evidence from one
site cannot inform our expectations regarding another: The
inference at an individual site is based only on the limited
amount of data from that site. The effect of this is that point
estimates of site-specific parameter values can be unreliable,
although robust inference is still possible by taking the uncer-
tainty about these point estimates into account (Kosakovsky
Pond and Frost 2005). Furthermore, methods where the
number of parameters increases with the number of obser-
vations can be asymptotically inconsistent (Felsenstein 2001).

By contrast, random effects likelihood (REL) models
(Nielsen and Yang 1998; Kosakovsky Pond and Muse 2005)
are designed to share information across sites by inferring a
gene-specific distribution for the selection parameters, with
the assumption that the rates at each site are an independent
draw from this distribution. Site-specific distributions for the
selection parameters can then be obtained by application of
Bayes’ rule. Many parametric forms have been investigated
for the gene-specific distribution of selection parameters

! The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please
e-mail: journals.permissions@oup.com
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Fitting a small number (4) of 
dN and dS values directly 

with post-hoc error estimates
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were estimated with FastTree 2 (Price et al. 2010) using the
GTR nucleotide model. FEL and FUBAR were compared on a
computing cluster, with the analyses running in parallel on 10
nodes each. FUBAR was consistently faster than FEL across all
tested alignments. As can be seen in figure 2, FEL took from
3.3 times longer (214 s for FEL vs. 65 s for FUBAR) for the
smallest alignment, to 19.5 times longer (1 h 2 min for FEL
vs. 3 min for FUBAR) for the largest alignment, with the rel-
ative disparity increasing uniformly with alignment size.
We also ran a discrete REL model, using three categories
each for ! and " and without parallelization, on the smallest
and largest alignments. The running times were 22 min 25 s
(20.7 times longer than FUBAR) and 35 h 29 min (709.7 times
longer than FUBAR), respectively.

Additionally (table 2), we used 16 alignments from a pre-
vious paper by our group (Murrell, Wertheim, et al. 2012),
ranging in size and divergence level to provide a sense of a
real-world speedup that could be realized by FUBAR. We
compared FUBAR, FEL, REL, and the M2 (3 rate classes) and
M8 (9 rate classes) models implemented in PAML v4.16.
FUBAR and FEL were run on 10 processors (a number readily
available even to researchers on a desktop). REL was run using
3! 3 rate classes using built-in OpenMP parallelization in
HyPhy (potentially using up to 9 processors). Finally, PAML
was run on a single processor—to our knowledge no parallel
version of the package exists—using the faster (by branch)
optimization procedure (Yang 2000). All analyses were per-
formed on systems equipped with 16-core 64-bit AMD
Opteron 6272 processors running CentOS 6, and relied on
gcc 4.4.6 to compile the source code.

Similar to the results in figure 2, FUBAR is the fastest of all
methods except on the smallest alignments (e.g., the Primate
Lysozyme alignment), and the benefit to using FUBAR be-
comes increasingly apparent with larger data sets, where, for
example, PAML can run two orders of magnitude slower.

Robustness to Model Misspecification
Prior to FUBAR, random effects models typically used a small
number of site categories to capture rate variation from one
site to another. We wanted to investigate how empirical
Bayesian inference behaves when the model is misspecified,
and, in particular, when the model is too simple to

Table 1. Comparative Performance of FEL and FUBAR on Simulated
Data.

Simulation FP : Power Power at FP ¼ 0:05

FEL FUBAR FEL FUBAR

Encephalitis virus env

x+ ¼ 1:25 0.01:0.03 0.00:0.01 0.04 0.10

x+ ¼ 1:5 0.00:0.03 0.00:0.02 0.09 0.14

x+ ¼ 1:75 0.00:0.03 0.00:0.04 0.08 0.17

x+ ¼ 2 0.00:0.05 0.00:0.07 0.13 0.24

x+ ¼ 3 0.00:0.09 0.00:0.20 0.19 0.38

x+ ¼ 5 0.00:0.19 0.00:0.44 0.34 0.60

x+ ¼ 8 0.00:0.28 0.00:0.60 0.50 0.74

x+ ¼ 12 0.00:0.34 0.00:0.67 0.54 0.82

x+ ¼ 16 0.00:0.38 0.00:0.77 0.63 0.85

Vertebrate Rhodopsin

x+ ¼ 1:25 0.01:0.07 0.00:0.04 0.07 0.12

x+ ¼ 1:5 0.01:0.08 0.00:0.08 0.08 0.18

x+ ¼ 1:75 0.01:0.13 0.01:0.15 0.14 0.26

x+ ¼ 2 0.01:0.19 0.01:0.27 0.13 0.37

x+ ¼ 3 0.01:0.32 0.01:0.57 0.34 0.59

x+ ¼ 5 0.01:0.48 0.01:0.80 0.51 0.88

x+ ¼ 8 0.01:0.67 0.01:0.96 0.74 0.98

x+ ¼ 12 0.00:0.71 0.00:0.99 0.80 1.00

x+ ¼ 16 0.00:0.76 0.00:0.99 0.88 1.00

Camelid VHH

x+ ¼ 1:25 0.01:0.11 0.01:0.09 0.06 0.09

x+ ¼ 1:5 0.02:0.19 0.01:0.20 0.14 0.21

x+ ¼ 1:75 0.01:0.34 0.01:0.42 0.26 0.53

x+ ¼ 2 0.01:0.51 0.01:0.60 0.48 0.62

x+ ¼ 3 0.01:0.74 0.01:0.74 0.64 0.78

x+ ¼ 5 0.01:0.93 0.01:0.95 0.93 0.97

x+ ¼ 8 0.01:0.98 0.01:0.99 0.98 0.99

x+ ¼ 12 0.01:0.97 0.01:1.00 0.97 1.00

x+ ¼ 16 0.02:0.99 0.03:1.00 0.99 1.00

NOTE.—The rate of false positives (FP) and power are reported for a fixed nominal
test P value of 0.05 for FEL, and a posterior threshold of 0.9 for FUBAR. To achieve a
fair comparison between tests with different measures of evidence, power is also
shown for the P value or posterior threshold that achieves FP of 0.05, estimated
empirically from the distribution of P values or posteriors on the subset of sites
evolving neutrally.

FIG. 2. Execution times for FEL and FUBAR as a function of the number
of codon sites (top) and number of taxa (bottom).
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FUBAR is dramatically faster (and as good or better)
accommodate the data, as this is almost universally true of
most models for real data sets. An example of this is the M2a
model implemented in PAML (Wong et al. 2004), which pos-
tulates three categories for ! ð¼ !="Þ. We simulated 10
replicate alignments of 1,000 sites each, using a constant
" ¼ 1 (i.e., no synonymous rate variation, as is assumed in
PAML), but with ! taking values of 0.2 (50% of sites), 1 (30%),
3 (10%), and 11 (10%). This represents a situation where most
sites are under purifying selection or evolving neutrally,
whereas a smaller proportion of sites are under either weak
or strong positive selection. The use of four site categories is
seemingly a small violation of the M2a model, whose alter-
native model allows the following three categories: one puri-
fying (!$ < 1), one neutral (!N ¼ 1), and one positive
selection (!+ > 1). The point of this setup is that, in biolog-
ical reality, the strength of positive selection is not constant
across all sites experiencing positive selection—if this causes
problems for M2a, it is reasonable to assume that coarse
discretization is also problematic for many other models
and not just for sites under positive selection.

The positive selection site category used by M2a must
attempt to accommodate both the ! ¼ 3 and the ! ¼ 11
sites, and the resulting MLE (averaged over 10 replicates) is
!!+ ¼ 7:6 (SD 0.64). The evidence in favor of positive selec-

tion at a specific site is determined by the ratio
Pð!+ j XÞ

1$ Pð!+ j XÞ %
Pð!+ j XÞ
Pð!N j XÞ between the posterior probability of it

belonging to the positive selection category and that of it
belonging to a different category (LHS); in this example, the
latter is dominated by the probability of the site belonging to
the neutral category (RHS). For any given gene-specific distri-
bution (acting as a prior for the site-specific distribution), this

ratio is proportional to the likelihood ratio Pðxij!+Þ
Pðxij!NÞ, i.e., the

ratio between the likelihoods evaluated at ! ¼ 7:6 and at
! ¼ 1: this represents the contribution from the data at the
site in question. The true peak of the likelihoods for most sites
of interest is between these values, declining to either side. For
some sites, the likelihood at ! ¼ 1 is higher than at ! ¼ 7:6,
and vice versa for other sites. See figure 3 (top) for a visual
depiction.

The effect of this (fig. 3, bottom) is that, among sites sim-
ulated with ! ¼ 3, M2a reports strong evidence in favor of
positive selection (posterior probability > 0:90) for 41% of
sites, but strong evidence against selection (posterior proba-
bility < 0:10) for 43% of sites. Instead of resulting in increased
uncertainty (which would yield moderate posteriors), the
slight model misspecification causes M2a to report incorrect
inferences with high confidence. Discussion of what we would
hope for should go in Discussion. In contrast, the dense con-
ditional likelihood grid of FUBAR allows it to infer the pres-
ence of both ! > 1 categories in the data and to base its
site-specific inference on likelihoods evaluated much closer to
the peak near ! ¼ 3. Of sites simulated with ! ¼ 3, 82%
were detected with posteriors > 0:90, 0.4%—with posteriors
< 0:50, and none with posteriors < 0:10. The mean posterior
probability of ! > 1 across sites simulated with ! ¼ 3 was
0.94 for FUBAR versus 0.49 for M2a.

A Large Empirical Example—Influenza A Virus
Hemagglutinin
To demonstrate the use of FUBAR, we analyzed a collection of
global human influenza A virus (IAV) hemagglutinin subtype
3 (H3) sequences from the NCBI Influenza Virus Database
(http://www.ncbi.nlm.nih.gov/genomes/FLU/, last accessed
July 2012). The influenza hemagglutinin glycoprotein (HA)

Table 2. Run Time Comparisons between Different Selection Detection Methods on 16 Empirical Data Sets, Sorted on the Duration of the
FUBAR Run.

Data Set Taxa Codons Mean
Divergence
Subs/Site

FUBAR
Run Times

(s)

Run Times (Times Slower than FUBAR)

FEL REL PAML M2a PAML M8

Echinoderm H3 37 111 0.33 40 5.1 12.0 7.1 46.1

Flavivirus NS5 18 342 0.48 45 8.6 4.5 9.3 25.5

Drosophila adh 23 254 0.26 53 3.4 4.0 2.7 4.3

West Nile virus NS3 19 619 0.13 58 6.1 5.9 37.2 105.5

Hepatitis D virus Ag 33 196 0.29 59 4.0 3.3 10.1 22.4

Primate lysozyme 19 130 0.08 62 0.5 3.0 0.7 1.8

Vertebrate rhodopsin 38 330 0.34 62 12.0 4.9 8.4 18.2

Japanese encephalitis virus env 23 500 0.13 68 4.8 8.8 1.6 4.0

Mamallian b-globin 17 144 0.38 74 1.5 8.4 2.3 5.6

Abalone sperm lysin 25 134 0.43 78 1.9 3.9 3.7 9.3

HIV-1 vif 29 192 0.08 84 2.6 3.8 2.3 4.5

Salmonella recA 42 353 0.04 102 2.1 2.9 2.6 12.3

Camelid VHH 212 96 0.27 120 6.3 17.2 141.0 311.1

Diatom SIT 97 300 0.54 136 10.2 5.1 21.5 19.3

Influenza A virus H3N2 HA 349 329 0.04 210 15.0 14.4 221.1 616.4

HIV-1 rt 476 335 0.08 278 15.2 14.4 ;a ;a

NOTE.—Run times that are at least 10 times greater than those of FUBAR are italicized, and those at least 100 times greater are underlined.
aPAML reported an error regarding too many ambiguities in the data set.
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We reconstructed the phylogeny for 3,142 
complete H3 nucleotide sequences 
isolated from humans using FastTree 2.  
The FUBAR selection analysis (which we 
restricted to 10 CPUs, just as for the 
timing comparisons) took one and a half 
hours.  

mediates the entry of the virus into cells and is the target of
neutralizing antibodies.

We reconstructed the phylogeny (fig. 4) for 3,142 complete
H3 nucleotide sequences isolated from Humans using
FastTree 2 (Price et al. 2010). The FUBAR selection analysis
(which we restricted to 10 CPUs, just as for the timing com-
parisons) took one and a half hours. Figure 4 shows the dis-
tribution of !! " across HA, with the mode at mild purifying
selection ð! < "Þ, and with a minority of sites under positive
selection ð! > "Þ. We use !! " rather than the posterior

Pð! > "Þ because, with so many sequences, the posteriors
can confidently report positive selection even when it is very
weak, and so we examine the estimated magnitude of positive
selection instead. As a measure of the magnitude of selection,
!=" is very skewed (due to unreliability in estimates of this
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FIG. 3. Site-specific inference under misspecified models. (Top) 100
log-likelihood curves as functions of ! ð¼ !="Þ for a set of simulated
sites (see text for description). Vertical lines indicate the value ! ¼ 3
under which the sites were simulated, along with the values for the
neutral and positive selection site categories (! ¼ 1 and ! % 7:6, re-
spectively) used by the M2a model in PAML. The value of the positive
selection site category does not match that under which the sites were
simulated, due to the presence of other sites under stronger positive
selection. The only evidence considered by M2a when classifying a site
into the neutral or positive selection category is the value of the likeli-
hood function at ! ¼ 1 and the value at ! ¼ 7:6. With the peaks of
the likelihood functions between these options, the model becomes
overconfident, assigning strong evidence either for positive selection
(exemplified by the blue curve) or against it (exemplified by the red
curve), even when this conclusion is incorrect. (Bottom) Histograms of
posterior site-specific probabilities of positive selection calculated for
sites simulated under a true ! ¼ 3. M2a (left) confidently identifies
positive selection in nearly half of these sites, but also incorrectly de-
clares strong evidence against positive selection in half. FUBAR (right)
detects most of the sites, and does not claim strong evidence for incor-
rect conclusions.
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FIG. 4. Influenza hemagglutinin analysis. (Top) The H3 phylogeny with
3,142 coding sequences. (Middle) The smoothed histogram of !! "
across H3, with the greatest density at mild purifying selection ð! < "Þ,
and fewer sites under positive selection ð! > "Þ. The notches depict
sites with posteriors greater than 0.9 for positive (red) or purifying (blue)
selection. (Bottom) The inferred !! " values mapped to the HA pro-
tein (PDB 3ZTJ; Corti et al. 2011), displayed from two viewpoints. Red
regions with stronger diversifying selection are likely involved in immune
escape. These primarily occur on the “head” of the protein, with mostly
purifying selection on the membrane proximal stem. See text for further
detail.
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FUBAR 8

Fast site-level analysis (FUBAR): no branch to branch 
variation; pervasive diversifying selection; random effects
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FUBAR results

• West Nile Virus NS3 protein 

• A single site (249, same as in 
Brault et al) with significant 
evidence of pervasive 
diversifying selection.


• HIV-1 transmission pair 

• 6 sites with significant evidence 
of pervasive diversifying 
selection.

FUBAR 9



Current suggested best practices.
There are lots of methods you could use to study positive selection, including about 10 
developed by our group. The field is still evolving, and this is our current suggestions of 
what to do with your data, depending on the question you want to answer.

Question Method Output
Is there episodic selection anywhere in 
my gene (or along a set of branches 
known a priori)?

Branch-site unrestricted statistical 
test of episodic diversification 
(BUSTED).

• p-value for gene-wide selection

• inferred dN/dS distributions

• a “quick and dirty” scan of sites where selection 

could have operated.

Are there branches in the tree where some 
sites have been subject to diversifying 
selection?

Also: inferring ancient divergence times.

Adaptive branch site random 
effects likelihood (aBSREL)

• p-values for each branch

• dN/dS distributions for each branch

• evolutionary process complexity

Are there sites in the alignment 
where some of the branches have 
experienced diversifying selection?

Mixed effects model of evolution 
(MEME)

• p-values for each site

• dN/dS distributions for each site


Are there sites which have 
experiences diversifying selection 
and my alignment is large?

Fast unconstrained bayesian 
analysis of selection (FUBAR)

• Posterior probabilities of selection at each site

• An estimate of the the gene-wide dN/dS 

distribution


Are parts of the tree evolving with 
different selective pressures 
relative to other parts of the tree?

RELAX (a test for relaxed 
selection)

• p-value for whether or not there is relaxed or 
intensified selection


• inferred dN/dS distributions for different branch 
sets


• more flexible distribution companions possible

INTERPRETING RESULTS 5



Recombination

• Affects a large variety of organisms, 
from viruses to mammals (e.g. gene 
family evolution)


• Manifests itself by incongruent 
phylogenetic signal


• This can be exploited to detect 
which sequence regions 
recombined and which sequences 
were involved


• Recombination can influence or 
even mislead selection detection 
methods.


• Using an incorrect tree to analyze a 
segment of a recombinant analysis 
can bias dS and dN estimation


• The basic intuition is that an 
incorrect tree will generally break 
up identity by descent and hence 
make it appear as if more 
substitutions took place than did in 
reality.

CONFOUNDERS 1
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classification using evolutionary algorithms), developed in Kosakovsky Pond et al (2009). Unlike

GARD, SCUEAL assumes that the reference sequences can be related by a single topology, which

is fixed a priori
4. A genetic algorithm searches for the breakpoints in the query sequences only

and, for each sequence fragment defined by the breakpoints –the branch in the reference tree where

the query sequence attaches. SCUEAL is implemented in HyPhy, and all the necessary files to

run it can be downloaded from http://www.hyphy.org/pubs/SCUEAL/. The download

includes a prebuilt reference alignment for HIV-1 pol sequences and documentation on how to

make custom reference alignments and screen sequences against them.
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0.01

Figure 4.2: The effect of recombination on inferring diversifying selection. Reconstructed evolu-
tionary history of codon 516 of the Cache Valley Fever virus glycoprotein alignment is shown ac-
cording to GARD inferred segment phylogeny (left) or a single phylogeny inferred from the entire
alignment (right). Ignoring the confounding effect of recombination causes the number of nonsyn-
onymous substitutions to be overestimated. A fixed effects likelihood (FEL, Kosakovsky Pond and
Frost (2005)) analysis infers codon 516 to be under diversifying selection when recombination is
ignored (p = 0.02), but not when it is corrected for using a partitioning approach (p = 0.28).

4It is possible to include recombinant sequences in the reference alignment, see Kosakovsky Pond et al (2009) for
details

CONFOUNDERS 2



Accounting for recombination

• First screen the alignment to find putative non-recombinant fragments (e.g. 
using GARD)


• Apply a model-based test (MEME, FUBAR) using multiple phylogenies (one 
per fragment), but inferring other parameters (e.g. nucleotide substitution 
biases and base frequencies) from the entire alignment


• This has been shown to work very well on simulated and empirical data


• This is the approach does not work for analyses assuming a single tree 
(BUSTED, aBSREL).

Mol. Biol. Evol. | 23(10):1891-901 | 2006CONFOUNDERS 3
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Table 4. E�ect of correcting for recombination when using fixed e�ects

likelihood to detect positively selected sites.
Virus and gene Positively Selected Codons

Uncorrected FEL Corrected FEL

Cache Valley G 212,516,546,551 None

Canine Distemper H 158, 179, 264, 444 179, 264, 444, 548

Crimean Congo hemm. fever NP 195 9,195

Hantaan G2 None None

Human Parainfluenza (1) HN 37,91, 358, 556 91, 358

Influenza A (human H2N2) HA 87, 166, 252, 358 87, 147,252, 358

Influenza B NA 42,106,345,436 42,106,345,436

Mumps F 57, 480 57, 480

Mumps HN 399 None

Newcastle disease F 1,4,5,7,16,18,108,516 1,5,7,16,108,493,505

Newcastle disease HN 2,54,58,228,262,284,306,471 2,58,228,262,284,306,471

Newcastle disease N 425, 430, 466 425, 430, 462, 466

Newcastle disease P 12,56,65,174,179,188,189, 204, 56, 65, 146, 153, 174, 179, 189,

208, 213,217,218,239,306,332 193, 204,208, 213, 218, 261,306,332

Puumala NP 79 None

Test p < 0.1 was used to classify sites as selected. Codon sites found under selection by

both methods are shown in bold.

27
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Synonymous rate variation

• dS = constant for all sites (assumed by many models); this assumption 
appears to be nearly universally violated in biological data, due to e.g. 
secondary structure, localized codon usage bias, overlapping reading frames, 
etc.


• This can lead to, e.g. incorrect identification of relaxed constraint as selection


• FUBAR and MEME fully account for dS variation; BUSTED and aBSREL 
provide experimental support.

must now convert those continuous distributions into dis-
crete approximations. Using the schemes discussed in Sup-
plementary Material online, discretization based on M ! 2
synonymous rate classes and N ! 2 nonsynonymous rate
classes is denoted by M 3 N. The inclusion of models
Nonsynonymous and Proportional, which have only one
random rate, as well as the use of distributions with an in-
variant category for Dual and Lineage Dual, require us to
define some rules for discretization. For Nonsynonymous
and Proportional, we discretize the single distribution into
MN equiprobable rate classes. For Dual and Lineage Dual,
we discretize the distribution of synonymous rates into
M equiprobable classes and the distribution of nonsynon-
ymous rates into N equiprobable classes. If an invariable
class is present for nonsynonymous rates, we discretize
the distribution of synonymous rates into M equiprobable
classes, the continuous portion of the mixture of nonsynon-
ymous rates into N " 1 equiprobable classes, and add the
invariable class at 0 to obtain N total nonsynonymous
classes. Under this discretization strategy, all models have
MN rate classes and equivalent computational costs.

When GDDs are used, no discretization is needed and
one only need specify the number of rate classes.

With the three components in place, we now have a
wide selection of models from which to choose. To com-
pletely specify a model, we list its rate variation model, core
rate matrix, rate heterogeneity method, rate distributions
used, and the discretization method. The model MG94 3
REV Dual Gamma 53 7 would use the MG94 core matrix
composed with the REV nucleotide model, have separate
independent gamma distributions for synonymous and
nonsynonymous rates, discretized into five synonymous
categories and seven nonsynonymous categories.

A Simple Test for Presence of Synonymous
Rate Variation

The Dual and Nonsynonymous models are nested if
GDD distributions are used to model rate variation, making
it possible to assess significance using standard likelihood
ratio tests. If N nonsynonymous rate categories are used
both in Dual and in Nonsynonymous and ifM synonymous

rate categories are employed in Dual, then there are 2M" 2
more estimable parameters in Dual than in Nonsynony-
mous. Dual can be constrained so that Nonsynonymous
is obtained. When enough alignment columns are available,
the asymptotic v2 distribution with 2M" 2 degrees of free-
dom can be used to compute P values. For smaller data sets
a parametric bootstrap P value can be found.

Alignments, Trees, and Programs

To investigate the utility of the new models in explor-
ing site-to-site rate heterogeneity, we made use of 10 pre-
viously studied codon alignments (table 1) of varying sizes
and levels of divergence. The archive of alignments and
phylogenetic trees in NEXUS format can be downloaded
from http://www.hyphy.org/pubs/2rates.tgz. We examine
the mammalian b-globin data set in great detail but for
brevity focus only on tests for the presence of synonymous
rate variation in other data sets.

All analyses were performed using ‘‘HyPhy’’ version
.99b (Kosakovsky Pond, Frost, and Muse 2004) for Mac
OS X on a dual G5/2Ghz workstation or a 16-processor
Linux MPI cluster. Both the program and the batch files
for comparing the models discussed herein and result pro-
cessing are included as standard analyses with the HyPhy
distribution (http://www.hyphy.org). The chart generation
option used for creating some of the graphics in this paper
is presently only available in Mac OS and Windows.

Results
Nucleotide Substitution Biases

In all data sets analyzed for this paper, the MG94 3
REV model of codon substitution was preferred over both
MG94 3 HKY85 and traditional MG94 when assessed by
the appropriate likelihood ratio test, and it was also chosen
over GY94 using Akaike Information Criterion (AIC) (Sup-
plementary Material online). This finding held even when
different rate variation models were considered. For the
remainder of this article, we consider only the MG94 3
REV core model unless specified otherwise.

Table 1
Data Sets Analyzed for Presence of Synonymous Rate Variation

MG94 3 REV
Nonsynonymous GDD 3

MG94 3 REV Dual
GDD 3 3 3

Data Reference Sequences Codons log L Tree Length log L Tree Length P Value DAIC

Sperm lysin (Yang and Swanson 2002) 25 135 "4,409 2.85 (0.06) "4,397.3 2.93 (0.06) 0.0001 15.36
Primate COXI (Seo, Kishino, and Thorne 2004) 21 506 "12,013.3 8.5 (0.22) "11,976.6 5.8 (0.15) ,0.0001 65.27
Drosophila adh (Yang et al. 2000) 23 254 "4,586.2 1.41 (0.03) "4,583.4 1.47 (0.03) 0.23 "2.35
HIV-1 vif (Yang et al. 2000) 29 192 "3,347.2 0.97 (0.02) "3,334.4 0.99 (0.02) ,0.0001 17.63
b-globin (Yang et al. 2000) 17 144 "3,659.3 2.6 (0.08) "3,649.1 3.3 (0.1) 0.0004 12.43
Influenza A* (Yang 2000) 349 329 "10,916.5 1.42 (0.002) "10,860.7 1.42 (0.002) ,0.0001 103.7
Camelid VHH* (Harmsen et al. 2000) 212 96 "16,540.8 14.9 (0.04) "16,391.2 14.9 (0.04) ,0.0001 291.24
Encephalitis env (Yang et al. 2000) 23 500 "6,774.4 0.85 (0.02) "6,752.8 0.89 (0.02) ,0.0001 35.15
Flavivirus NS5 (Yang et al. 2000) 18 183 "9,137.8 6.3 (0.19) "9,110.2 7.8 (0.24) ,0.0001 47.25
Hepatitis D antigen (Anisimova and Yang 2004) 33 196 "5,137.7 1.9 (0.03) "5,074.2 2.02 (0.03) ,0.0001 118.98

NOTE.—Tree lengths are reported in expected numbers of substitutions per unit time per nucleotide site; numbers in parentheses reflect mean branch lengths. Reported

P value is for the likelihood ratio test between the Nonsynonymous and Dual rate variation models, using the asymptotic distribution of v24:DAIC is the difference in AIC scores

between the Dual and Nonsynonymous models: positive numbers indicate the preference for the Dual model. Analyses marked with the asterisk used a branch length

approximation scheme similar to Yang (2000), discussed in detail in Kosakovsky Pond and Frost (2005b) to reduce computational burden.

Site-to-Site Silent Variation 2379

Mol. Biol. Evol. 22(12):2375–2385. 2005 
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ON SUITABILITY OF DN/DS FOR INTRA-SPECIES ANALYSES 1

Interpreting dN/dS for intra-host and intra-species 
pathogen

• dN/dS can be estimated for all sorts of sequence data (e.g., it has been done 
for cancer SNP data)


• Traditional interpretation of dN/dS is based on the assumption that 
substitution ~ fixation 

• Not the same for intra-species / intra-host pathogens


• Much of variation is due to polymorphism, or even dead-end mutations


• This is because selection has not had a chance to “filter” mutations 
(except for patently deleterious ones)


• This often manifests as differences in selective “regimes” between tips and 
internal branches 
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• Partition a pathogen tree into terminal and 
internal branches


• Terminal branches potentially include “dead-
end” l ineages, i .e . those which are 
maladaptive 


• Internal branches include at least one 
“ t r a n s m i s s i o n ” ( i n t r a - s p e c i e s ) o r 
“replication” (intra-host) events: stronger 
action of selection


• Focusing on a subset of branches can allow 
one to interpret dN/dS more precisely
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• “… at least half of the amino acid sites 
selected within individuals are not selected at 
a population level”


• “… Based on the elevated rate of adaptation 
within individuals detected at codons subject 
to population-level selection, relative to the 
codons where only recent substitutions have 
been inferred, we conclude that recent 
substitutions are, on average, maladaptive at 
the level of the human population”

PLoS Comput Biol 2(6): e62. doi:10.1371/journal.pcbi.0020062


